Matt Akamatsu

Matt Akamatsu, PhD
Arnold O. Beckman Postdoctoral Fellow

Matt combines mathematical modeling and quantitative fluorescence imaging to study how actin produces force at sites of mammalian endocytosis.

PhD: Department of Molecular Biophysics and Biochemistry, Yale University, lab of Tom Pollard

E-mail: matt.akamatsu@berkeley.edu

https://www.researchgate.net/profile/Matthew_Akamatsu/contributions

Publications

  1. Principles of self-organization and load-adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. Akamatsu M., Vasan R., Serwas D., Ferrin M., Rangamani P., Drubin D. G. Submitted https://doi.org/10.1101/678797
  2. A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier associated with membrane neck constriction. Vasan R., Rudraraju S., Akamatsu M., Garikipati K., Rangamani P. Submitted https://doi.org/10.1101/672485
  3. Intracellular Membrane Trafficking: Modeling Local Movements in Cells. SIAM (2018). Vasan R., Akamatsu M., and Rangamani P. Cell Movement, Modeling and Simulation in Science, Engineering and Technology. https://doi.org/10.1007/978-3-319-96842-1_9
  4. Lou H.S., Zhao W., Li X, Duan L, Powers A, Akamatsu M., Santoro F, McGuire A, Cui Y, Drubin D. G., Cui B. Membrane curvature-dependent actin polymerization induced by surface topography. Submitted.
  5. Genome-edited human stem cells expressing fluorescently labeled endocytic markers allow quantitative analysis of clathrin-mediated endocytosis during differentiation. Dambournet D., Sochacki K.A., Cheng A., Akamatsu M., Taraska J.W., Hockemeyer D., Drubin D.G. J Cell Biol. 2018 Sep 3;217(9):3301-3311. https://doi.org/10.1083/jcb.201710084
  6. Akamatsu M., Lin Y., Bewersdorf J., Pollard T. D. Analysis of interphase node proteins in fission yeast by quantitative and super resolution fluorescence microscopy. Molecular Biology of the Cell (2017). https://doi.org/10.1091/mbc.e16-07-0522
  7. Zhao W., Hanson W, Lou, H.S., Akamatsu M., Chowdary P. M., Santoro F, Marks J. R., Grassart A, Drubin D. G., Cui Y, Cu, B. Nanoscale manipulation of membrane curvatures for probing endocytosis in live cells. Nature Nanotechnology 11, 822 (2017). https://doi.org/10.1038/nnano.2017.98
  8. Pu K. M., Akamatsu M., & Pollard T. D. The septation initiation network controls the assembly of type 1 cytokinesis nodes in fission yeast. J Cell Sci 128, 441–446 (2015). https://doi.org/10.1242/jcs.160077
  9. Akamatsu M., Berro J., Pu K. M., Tebbs I. R., Pollard T. D. Cytokinetic nodes in fission yeast arise from two distinct types of nodes that merge during interphase. J Cell Biol 204, 977–988 (2014). http://doi.org/10.1083/jcb.201307174
  10. McCormick, C. D., Akamatsu, M. S., Ti, S.-C. & Pollard, T. D. Measuring Affinities of Fission Yeast Spindle Pole Body Proteins in Live Cells across the Cell Cycle. Biophysj 105, 1324–1335 (2013). https://doi.org/10.1016/j.bpj.2013.08.017