David Drubin, in his capacity as Editor-in-Chief of Molecular Biology of the Cell, has just joined Twitter. You can follow his tweets by clicking the link below:
Tag Archives: David Drubin
Happy Halloween from the Drubin/Barnes Lab!!
The Drubin/Barnes Lab Has a New Theme Song!
We now present to you a brand new theme song to introduce the world to all of the awesome people in the Drubin/Barnes Lab!
The Drubin-Barnes Lab!
(Parody of The Brady Bunch Theme Song)
Submission for UC-Berkeley MCB Follies 2012-2013
(UC-Berkeley, Dept. of Molecular and Cell Biology)
LYRICS, VOCALS, CAMERA, EDITING: Nathaniel Krefman
ADDITIONAL VOCALS: Akemi Kunibe
STARRING: The Drubin/Barnes Lab at UC-Berkeley (Fall 2012)!
PIs: Profs. David Drubin and Georjana Barnes
1st GROUP (microtubules, spindles, kinetochores, & mitosis in budding yeast): Adrianne Pigula (top left), Nathaniel Krefman (center left), Itziar Ibarlucea-Benitez (bottom left), Prof. Georjana Barnes (center), Anthony Cormier (center right)
2nd GROUP (actin cytoskeleton and endocytosis in mammalian cells and budding yeast): Aaron Cheng (top left square, left), Jasper Weinberg (top left square, right), Rebecca Lu (center left square, left), Lillie Cohn (center left square, center), Akemi Kunibe (center left square, right), Yansong Miao (bottom left square), Prof. David Drubin (center square), Sun Hae Hong (top right square, left), Yidi Sun (top right square, right), Alex Grassart (center right square, left), Daphne Dambournet (center right square, right), Christa Cortesio (bottom right square, left), Eric Lewellyn (bottom right square, right).
________________________________________________
LYRICS:
Here’s the story of a lovely lady.
Who studied what a microtubule’s for.
All her group loves mitosis, like Georjana,
And kinetochores.
Here’s the story of a PI named David,
Who was interested in actin in live cells,
And his group mapped endocytosis dynamics,
Yet they were by themselves.
After their post-docs, where the lady met this fellow,
And named a protein complex DAM instead of DARN,
They knew their groups must form one laboratory.
That’s the way our lab became the Drubin/Barnes!
The Drubin/Barnes!
That’s the way our lab became the Drubin/Barnes!
Lighting Up Live Cells with Fluorescence (Genetic Engineering & Biotechnology News)
Genetic Engineering & Biotechnology News is out with a Feature Article this week including some comments from David Drubin about targeted genome modification in mammalian cells for fluorescence microscopy studies.
Lighting Up Live Cells with Fluorescence. Christine Herman. GEN. Sep 1, 2012 (Vol. 15, No. 32)
“The difference between taking snapshots of the process and watching a movie is just night and day,” says David Drubin, Ph.D., professor of cell and developmental biology at the University of California, Berkeley, whose lab uses fluorescence to understand the intricate details underlying clathrin-mediated endocytosis.
An Interview with David Drubin in Biowire
The May 2012 edition of Biowire, a publication of Sigma-Aldrich, includes an interview with David Drubin about the projects in our lab looking at clathrin-mediated endocytosis (CME) in mammalian cells using zing finger nuclease (ZFN) technology to undertake targeted genome modification. Traditionally, CME has been studied in cells in which fluorescently-tagged components of endocytic machinery are overexpressed using exogenous constructs. Data obtained in many labs using these methods suggested that CME was highly variable. Using ZFN technology, in collaboration with Sangamo Biosciences, our lab recently showed that CME is robust and efficient in mammalian cells. The new results highlight the technical advantages of tagging genes at their endogenous loci, an approach that has been historically limited to genetically tractable organisms, such as the Drubin/Barnes Lab favorite Saccharomyces cerevisiae (budding yeast). Emerging technologies, such as ZFNs and TALENs, however, are now making this sort of precise genomic manipulation possible in animal cells, including human cells, giving us new and powerful ways of studying cellular biology.
Cellular processes should be studied as close to their natural states as possible. I suspect that, as we see more uses of zinc finger nucleases [for tagging endogenous genes], people will find that they have been inadvertently perturbing the processes that they have been studying.
David Drubin (Biowire, May 2012)